Construction of a catalytically active iron superoxide dismutase by rational protein design.

نویسندگان

  • A L Pinto
  • H W Hellinga
  • J P Caradonna
چکیده

The rational protein design algorithm DEZYMER was used to introduce the active site of nonheme iron superoxide dismutase (SOD) into the hydrophobic interior of the host protein, Escherichia coli thioredoxin (Trx), a protein that does not naturally contain a transition metal-binding site. Reconstitution of the designed protein, Trx-SOD, showed the incorporation of one high-affinity metal-binding site. The electronic spectra of the holoprotein and its N3- and F- adducts are analogous to those previously reported for native {Fe3+}SOD. Activity assays showed that {Fe3+}Trx-SOD is capable of catalyzing the dismutation of the superoxide anion; comparative studies with the unrelated wild-type E. coli iron SOD indicated that {Fe3+}Trx-SOD catalyzes the dismutation reaction at a rate on the order of 10(5) M-1s -1. The ability to design catalytically competent metalloenzymes allows for the systematic investigation of fundamental mechanistic questions concerning catalysis at transition metal centers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea

Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...

متن کامل

Amsacta moorei entomopoxvirus expresses an active superoxide dismutase.

The entomopoxvirus from Amsacta moorei serves as the prototype of the group B entomopoxviruses. One of the interesting genes found in Amsacta moorei entomopoxvirus (AmEPV) is a superoxide dismutase (sod) (open reading frame AMV255). Superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and oxygen. Many vertebrate poxviruses contain a sod gene, but to d...

متن کامل

A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus.

Superoxide dismutase from the thermophilic anoxygenic photosynthetic bacterium Chloroflexus aurantiacus was cloned, purified, and characterized. This protein is in the manganese- and iron-containing family of superoxide dismutases and is able to use both manganese and iron catalytically. This appears to be the only soluble superoxide dismutase in C. aurantiacus. Iron and manganese cofactors wer...

متن کامل

Regulation of an in vivo metal-exchangeable superoxide dismutase from Propionibacterium shermanii exhibiting activity with different metal cofactors.

The anaerobic, but aerotolerant Propionibacterium freudenreichii sp. shermanii contains a single superoxide dismutase [EC 1.15.1.1.] exhibiting comparable activity with iron or manganese as metal cofactor. The formation of superoxide dismutase is not depending on the supplementation of iron or manganese to the culture medium. Even in the absence of these metals the protein is built in comparabl...

متن کامل

Cu,Zn-superoxide dismutase without Zn is folded but catalytically inactive.

Amyotrophic lateral sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding but immediately deactivates the enzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 11  شماره 

صفحات  -

تاریخ انتشار 1997